MATH 2020 Advanced Calculus 11

Tutorial 6
Oct 15,17

1. Find the area of the region bounded by y = =,y = 2z, xy = 1 and xy = 2.

Solution. Consider the transformation
u = y/x
v o= xy
Then R is mapped bijectively onto the square R’ defined by {1 < u,v < 2}. We have
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2. (a) Evaluate [, = / e “sinydy and I, = / e Y cos ydy (where x is regarded
0 0

as constant).

* rsinx * cosx
b) Show that dr = dzx.
(b) Show a/o :c2+1x /0 5132+1$

Solution.
(a) By integration by parts,
I = [e7(— cos y)}go — x/ooo e Y cos ydy
=1—xl
I, = [e ™(sin y)} + :13/000 e " sinydy
= xl.

So we have
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Remark. In fact, it is possible to evaluate these two integrals, say the second one, as

follows:

LetI(a) = / C(Q)sti dx, regarded as a function of a. Then I(0) = /
0 0
and /(1) is what we are computing. Taking the derivative:
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(Here the fourth equality follows from a slight generalization of part (a) and the fifth

equality follows from the substitution y = at.)

Solving this simple ODE, we have

and hence

* sinx
. Evaluate / dx.
0 xr

Solution. Observe that

1 oo
- = / e dy.
L 0

e sin xdydx

So

e sin xdxdy

( by Q2 part (a))



